HTML Sanity Checker Architecture
Documentation

Table of Contents

Goals of this Documentation

Disclaimer

1. Introduction and Goals

1.1. Requirements Overview

1.1.1. Basic Usage

Terminology: What Can Go Wrong in HTML Files?

1.1.2. General Functionality

1.1.3. Types of Sanity Checks

1.1.4. Reporting and Output Requirements
1.2. Quality Goals
1.3. Stakeholder
1.4. Background Information on URIs

1.4.1. Intra-Document URIs

1.4.2. References on URIs and HTML Syntax

2. Constraints
3. Context

3.1. Business Context
3.2. Deployment Context

4. Solution Strategy
5. Building Block View

5.1. Whitebox HtmlSanityChecker

5.1.1. HSC Core (Blackbox)
5.2. Building Blocks - Level 2

5.2.1. HSC-Core (Whitebox)

5.2.2. Checker and xyzChecker Subclasses
5.3. Building Blocks - Level 3

5.3.1. ResultsCollector (Whitebox)

6. Runtime View
7. Deployment View
8. Technical and Crosscutting Concepts

8.1. HTML Checking Domain Model
8.2. Gradle Plugin Concept and Development
8.2.1. Directory Structure and Required Files

8.2.2. Passing Parameters From Buildfile to Plugin

8.2.3. Building the Plugin
8.2.4. Uploading to Public Archives

8.2.5. Further Information on Creating Gradle Plugins

8.3. Flexible Checking Algorithms

© © © 00 N 3 O O U1 Ul b b W W W w NN

NN NN NDNNDNIDNR B R B B R ol | |l)
W W W W W NN B = O 00 Ul U b W W Wk N -

8.3.1. MissingImageFilesChecker
8.3.2. MissingImgAltAttributeChecker
8.3.3. BrokenCrossReferencesChecker
8.3.4. DuplicateldChecker
8.3.5. MissingLocalResourcesChecker
8.3.6. BrokenHttpLinksChecker
8.3.7. lllegalLinkChecker
8.4. Encapsulate HTML Parsing
8.5. Flexible Reporting
8.5.1. Styling the Reporting Output
8.5.2. Copy Required Resources to Output Directory
8.5.3. Attributions
9. Design Decisions
9.1. Checking of external links postponed
9.2. HTML Parsing with jsoup
9.3. String Similarity Checking with Jaro-Winkler-Distance
10. Glossary

25
25
26
26
26
26
26
27
27
28
28
28
29
29
29
29
31

https://wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

arc®

© This document uses material from the arc42 architecture template, freely available at
https://github.com/arc42.

This material is open source and provided under the Creative Commons Sharealike 4.0 license. It comes without
any guarantee. Use on your own risk. arc42 and its structure by Dr. Peter Hruschka and Dr. Gernot Starke. Asciidoc
version initiated by Markus Schértel and Jiirgen Krey, completed and maintained by Ralf Miiller and Gernot Starke.

Version {version} of 2023-10-24

o Within the following text, the "Html Sanity Checker" shall be abbreviated with
Htm1SC

https://github.com/arc42
https://arc42.de
https://github.com/arc42

Goals of this Documentation

This documentation is an example of arc42 documentation.

You may copy this documentation or parts of it for your own projects. In such cases you must
include a link or reference to arc42 or aim42 (we regard this as fair-use).

For real-world projects, the relation of code and documentation is over-sized.

Disclaimer

We provide absolutely no guarantee, neither for the accuracy of this documentation nor for any
property or feature of the software described here.

Do not use this software in critical situations or projects.

https://github.com/arc42
https://github.com/arc42
https://github.com/aim42

Chapter 1. Introduction and Goals

Htm1SC shall support authors creating digital formats with hyperlinks and integration of images and
similar resources.

1.1. Requirements Overview

The overall goal of HtmlSC is to create neat and clear reports, showing errors within HTML files - as
shown in the adjoining figure.

HTML Sanity Check Results m
1 837 29 0.661sec 96% 't"!;

page checks Isoues dualion successh
Results by Page
Page Checks Findings Success rate

indexhiml 837 2 26%

Results for index.html|

focaton ;. rami

32061 87 29 96%
iy checks lssuss —

Missing Local Images Check
30 img src attributes checked, 0 missing image fiies found.
Duplicate Definition of id Check

400 chacked, 2 duplcate d founs,

+ el "Impesct-Analysis® has 2 definiticns.
+ id “Maasura’ has 2 definiins,

Broken Internal Links Check
370 hrof chackod, 22 missing i found,
ik traer et i fredesace coame 1

i 4
+ i ta ,evmnme Documaniason” mnng(mevem ot 1)
. count 1)
* ik tr et “Slakaholaar&nenvews” Missing (elrenca count 3

+ i targat “Funlima- Aritac Analysis” missing {roference cownt 5)
target "Practicos” missing irefarence count 1)

)
rograr ing (retoronce count 1)
s mssey mernce cound 1)
opportmias o cx5ing (raforanca count 3
e alru’maeng mem sontz

Taraet ClamenaATAME e

g hte rograno nasing [reletmnemml n
i targot “operations” missing (roforanco count 1)

Missing Local Resources Check

3 anchar tag hvef tiriauta chocked, 0 missing local resouroes found
Missing alt-attribute declaration in image tags

M magmgs checked, 5 missing okt atibutes found.

. ch “imagesan ma1m'4-muoimnw s mistog siaroune

.mﬂ magescrossnting pafars. omplte oy & Mt ak Ao

1.1.1. Basic Usage

1. A user configures the location (directory and filename) of one or more HTML file(s),
2. and the corresponding images directory.
3. HtmlSC performs various checks on the HTML and

4. reports its results either on the console or as HTML report.

Htm1SC can run from the command line or as Gradle-plugin.

Terminology: What Can Go Wrong in HTML Files?

Apart from purely syntactical errors, many things can go wrong in html, especially with respect to
hyperlinks, anchors and id’s - as those are often manually maintained.

Primary sources of problems are bad links (in technical terms: URIs). For further information, see
the background information on URISs.

Broken Cross References:: Cross-references (internal links) can be broken, e.g. due to missing or misspelled
link-targets.

/images/sample-hsc-report.jpg
https://gradle.org/

See BrokenCrossReferencesChecker

Missing image files: Referenced image files can be missing or misspelled.

See MissingImageFilesChecker.

Missing local resources: Referenced local resources (other than images) can be missing or misspelled.

See MissingLocalResourcesChecker

Duplicate link targets: link-targets can occur several times with the same name - so the browser cannot
know which is the desired target.

See DuplicateldChecker.

Broken external links: External http links can be broken due to myriads of reasons: misspelled, link-target
currently offline, illegal link syntax.

See BrokenHttpLinksChecker.

Missing Alt Attribute in Image Tags: Images missing an alt-attribute.

See MissingImgAltAttributeChecker.
Checking and reporting these errors and flaws is the central business requirement of Htm1SC.

Important terms (domain terms) of html sanity checking is documented in a (small) domain model.

1.1.2. General Functionality

Table 1. General Requirements

ID Functionality Description
G-1 read HTML file HtmlSC shall read a single (configurable) HTML file
G-2 Gradle-plugin HtmlSC can be run as Gradle-plugin.

HtmlSC can be called from the command line with

G-3 command line usage)

arguments and options
G-4 configurable output output can be configured to console or file

all required dependencies shall be compliant to the CC-SA-
G-5 free and open source

4 licence.

available via public

G-6 . like bintray or jcenter.
repositories
configure a set of files to be processes in a single run and
configurable to check & . P & .
G-7 produce a joint report. (useful for e.g. API documentation

multiple HTML files
wp ' with many HTML files referencing each other)

1.1.3. Types of Sanity Checks

Table 2. Required Checks

chapters/chap-08-Concepts.pdf#BrokenCrossReferencesChecker
chapters/chap-08-Concepts.pdf#MissingImageFilesChecker
chapters/chap-08-Concepts.pdf#MissingLocalResourcesChecker
chapters/chap-08-Concepts.pdf#DuplicateIdChecker
chapters/chap-08-Concepts.pdf#BrokenHttpLinksChecker
chapters/chap-08-Concepts.pdf#MissingImgAltAttributeChecker
chapters/chap-08-Concepts.pdf#_html_checking_domain_model
https://gradle.org/
https://gradle.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

I Check

R missing image files

R broken internal links

R missing local files

R duplicate link targets

R malformed links

R missing alt-attribute

R unused-images

R illegal link targets

Table 3. Optional Checks

Description

Check all image tags if the referenced image files exist. See
MissingImageFilesChecker

Check all internal links from anchor-tags (href="#XYZ") if the link
targets "XYZ" are defined. See BrokenCrossReferencesChecker

either other html-files, pdf’s or similar. See
MissingLocalResourcesChecker

Check all bookmark definitions (... id="XYZ") whether the id’s ("XYZ")
are unique. See DuplicateldChecker

Check all links for syntactical correctness
in image-tags. See MissingImgAltAttributeChecker
Check for files in image-directories that are not referenced by any of

the HTML files in this run

Check for malformed or illegal anchors (link targets).

ID Check Description
Opt-1 missing external images Check externally referenced images for availability
Opt-2 broken external links Check external links for both syntax and availability

1.1.4. Reporting and Output Requirements

Table 4. Reporting Requirements

ID Requirement Description

various output

R-1
formats

Checking output in plain text and HTML

R-2 output to stdout HtmlSC can output results on stdout (the console)

configurable file
output

HtmlSC can store results in file in configurable directories

1.2. Quality Goals

Table 5. Quality-Goals

Prio Quality- Scenario
rity Goal

1 Correctnes Every broken internal link (cross reference) is found.
S

1 Correctnes Every missing local image is found.
S

2 Flexibility Multiple checking algorithms, report formats and clients. At least Gradle,
command-line and a graphical client have to be supported.

2 Safety Content of the files to be checked is never altered.

2 Correctnes Correctness of every checker is automatically tested for positive AND negative
S cases

2 Correctnes Every reporting format is tested: Reports must exactly reflect checking results.
S

3 Performan Check of 100kB html file performed under 10 secs (excluding gradle startup)
ce

1.3. Stakeholder

Table 6. Stakeholder

Role Description Goal, Intention

Documentati writes documentation with wants to check that the resulting document
on author Html output contains good links, image references

arc42 user uses the arc42 template for wants a small but practical example of how to

architecture documentation apply arc42.

aim42 contributes to aim42 methode- check generated html code to ensure links and

contributor guide images are correct during (gradle-based) build
process

software wants an example of pragmatic architecture

developer documentation and arc42 usage

1.4. Background Information on URIs

The generic structure of a Uniform Resource Identifier consists of the following parts:
[typell://l[subdomain][domain][port][path][file][query][hash]

An example, visualized:

protocol://|lhost]|: path][? #ref

http:f/fexample.com:42/docs/index.html? #INTRO

The java.net.URL class contains a generic parser for URLs and URIs. See the following snippet, taken
from the unit test class URLUti1Test.groovy:

Generic URI Structure

@Test
public void testGenericURISyntax() {
// based upon an example from the Oracle(tm) Java tutorial:
// http://docs.oracle.com/javase/tutorial/networking/urls/urlInfo.html
def aURL =
new
URL("http://example.com:42/docs/tutorial/index.html?name=aim42#INTRO");
aURL.with {
assert getProtocol() == "http"
assert getAuthority() == "example.com:42"
assert getHost() == "example.com"
assert getPort() == 42
assert getPath() == "/docs/tutorial/index.html"
assert getQuery() == "name=aim42"
assert getRef() == "INTRO"

URIs are used to reference other resources. For HtmlSC it is useful to distinguish between internal
(==1local)and external references:

* Internal references, a.k.a. Cross-References
» External references

1.4.1. Intra-Document URIs

a file... ref can be an internal link, or a URI without protocol...

1.4.2. References on URIs and HTML Syntax

» IETF RFC-2396 on URI Syntax: The fundamental reference!
* W3C HTML Reference

* Wikipedia on URI-Schemes

https://www.ietf.org/rfc/rfc2396.txt
https://www.w3.org/TR/html401/struct/links.html#h-12.2.4
https://en.wikipedia.org/wiki/URI_scheme#Generic_syntax

Chapter 2. Constraints

Htm1SC shall be:
 platform-independent and should run on the major operating systems (Windows™, Linux, and
Mac-0S™)
* integrated with the Gradle build tool
* runnable from the command line

* developed under a liberal open-source license

Chapter 3. Context

3.1. Business Context
cmp hsc-context

Build system (g4
Gradiz, maks)
~a |
WUEEF = = - ‘
~ X
Html Sanity Check
v}
L I T~ checks ¥ Risk *
[l - \
checks” checks E
- L
-~ - | n::;:ﬁr& .
- _\t ﬁ'pm'mﬂf-»? respurres
- local bl (5]} 7 references
local tmages S|\ _ Fies) =
refevences
Figure 1. Business Context
Table 7. Business Context
Neighbor Description
user documents software with toolchain that generates html. Wants to ensure that
links within this html are valid.
build system
local html files Htm1SC reads and parses local html files and performs sanity checks within

those.
local image files Htm1SC checks if linked images exist as (local) files.

external web Htm1SC can be configured to optionally check for the existence of external web
resources resources. Due to the nature of web systems, this check might need a
significant amount of time and might yield invalid results due to network and

latency issues.

3.2. Deployment Context

The following diagram shows the participating computers ({node}) with their technical connections
plus the major {artifact} of HtmlSC, the hsc-plugin-binary.

cmp IjEp|D'!,I’I'I'IEI'It-GDI‘I‘tEKt/

global artifact repository (ie Bintray)

=hinary= |3

wclpinaris __'I I"-SC--PIIHQI'F.
) hec-core
— internet & hitps ﬁl"
E
hse developren ——/" h ,
\ [
\ |
Wi z v internet S
“rource» 4 A hetps |
5 I
A 1
— A I
hse wters! wmputer: \ II
N
bt file(s) |5 build gradle |5
Figure 2. Deployment Context
Table 8. Deployment Context
Node / Artifact Description
{node} hsc- where development of HtmlSC takes place
development
{artifact} hsc-plugin- compiled and packaged version of HtmlSC including required
binary dependencies.

global public cloud repository for binary artifacts, similar to

{node} artifact
mavenCentral. HtmlSC binaries are uploaded to this server.

repository (Bintray)

{node} hsc user where arbitrary documentation takes place with html as output formats.

computer
Gradle build script configuring (among other things) the Htm1SC plugin to
perform the Html checking.

{artifact} build.gradle

Details see deployment view.

10

https://bintray.com/bintray/jcenter
https://search.maven.org/
chapters/chap-07-Deployment.pdf#deployment-view

Chapter 4. Solution Strategy

* Implement HtmlSC in Groovy and Java with minimal external dependencies. Wrap this
implementation into a Gradle plugin, so it can be used within automated builds. Details are
given in the Gradle plugin concept.

* Apply the template-method-pattern (see e.g. {template-method-url}) to enable:
o multiple checking algorithms. See the concept for checking algorithms,

o both HTML (file) and text (console) output. See the reporting concept.

11

https://www.groovy-lang.org/
https://gradle.org/
chapters/chap-08-Concepts.pdf#gradle-plugin-concept
chapters/chap-08-Concepts.pdf#checking-concept
chapters/chap-08-Concepts.pdf#reporting-concept

Chapter 5. Building Block View

5.1. Whitebox HtmlSanityChecker

O S
T T
_,.'a\\ Build System
docu-author - B
f.-f’
, i’ HtmlSanityChechf{Level 1)
s T A" —
| |
| «planned » | «planned » . . |
| HSC Graphical Ul | ,| HSC Maven Plugin | L HSC Gradie Plugin _1
- T, - -

g]
MetUtil

F Vg

local file system external Websites

HtrrlS antyC hack
https:jfgithub. corm aimd 2ZftmlS anity Check

Rationale

We used functional decomposition to separate responsibilities:

* CheckerCore shall encapsulate checking logic and Html parsing/processing.

« all kinds of outputs (console, html-file, graphical) shall be handled in a separate component
(Reporter)

* Implementation of Gradle specific stuff shall be encapsulated.

Contained Blackboxes
Table 9. HtmlSanityChecker building blocks

HSC Core hsc core: html parsing and sanity checking, configuration, reporting.

HSC Gradle Plugin integrates the Gradle build tool with Htm1SC, enabling arbitrary gradle
builds to use HtmlSC functionality.

HSC Maven Plugin (planned, not yet implemented)

HSC Graphical (planned, not implemented)

Interface

12

chapters/chap-08-Concepts.pdf#checker_blackbox

Interfaces
Table 10. HtmlSanityChecker internal interfaces

Interface Description

usage via shell arc42 user uses a command line shell to call the Htm1SC

build system currently restricted to Gradle: The build system uses HtmlSC as configured in
the buildscript.

local-file system Htm1SC needs access to several local files, especially the html page to be
checked and to the corresponding image directories.

external websites to check external links, Htm1SC needs to access external sites via http HEAD or
GET requests.

5.1.1. HSC Core (Blackbox)

Intent/Responsibility

HSC_Core contains the core functions to perform the various sanity checks. It parses the html file
into a DOM-like in-memory representation, which is then used to perform the actual checks.

Interfaces
Table 11. HSC_Core Interfaces

Interface (From-To) Description

Command Line Interface - Uses the #AllChecksRunner class.

Checker

Gradle Plugin — Checker Exposes HtmlSC via a standard Gradle plugin, as described in the

Gradle user guide.

Files

 org.aim42.htmlsanitycheck.AllChecksRunner

* org.aim42.htmlsanitycheck.HtmlSanityCheckGradlePlugin

5.2. Building Blocks - Level 2

5.2.1. HSC-Core (Whitebox)

13

amp hso-core
AllChecksRunner local file systern
ik
HSC Core d_l 3:]
'4
wirite
report Results %:] Results
results Collector
£
¢ =
Report -~
= g] Findings
C
O ¥
[
[
i/
i
add Finding
.!
MGG = E] o Suggester g:]
Html Parser ~— (= =
oo
|
|
I Legend
|
M’ E] dane
"—‘l E] planned
. external
| | il
peal file system resources

Figure 3. HSC-Core (Whitebox)

Rationale

This structures follows a strictly functional decomposition:

 parsing and handling html input
* checking
* collecting checking results

Contained Blackboxes
Table 12. HSC-Core building blocks

Checker Abstract class, used in form of the template-pattern. Shall be subclassed for all
checking algorithms.

AllChecksRunner Facade to the different Checker instances. Provides a (parameter-driven)
command-line interface.

ResultsCollector ~ Collects all checking results. Its interface Results is contained in the whitebox

(Whitebox) description

Reporter Reports checking results to either console or an html file.

HtmlParser Encapsulates html parsing, provides methods to search within the (parsed)
html.

Suggester In case of checking issues, suggests alternatives by comparing the faulty

element to the one present in the html file. Currently not implemented

5.2.2. Checker and xyzChecker Subclasses

The abstract Checker provides a uniform interface (public void check()) to different checking

14

algorithms. It is based upon the concept of extensible checking algorithms.

5.3. Building Blocks - Level 3

5.3.1. ResultsCollector (Whitebox)

cmp ResultsCollector /

|

Per-Run Results

Results Collector

— G — —

o— 1.

Finaings

*aald -Finding

%

Reporter
*ﬂ\ :

wnusgs = Single Page Results

mages pageName String
pag.g,'l’l't le :Stn'r'..g
metalnfe PageMetainfo

W | A

Single Check Results e

whatisChecked String
Spurceltem String 1 0o %
targetitem B

nwridfitemsChecked int

itew -String
Suggestion String

Figure 4. Results Collector (Whitebox)

Rationale

This structures follows the hierarchy of checks - namely managing results for:

1. a number of pages/documents, containing:

2. a single page, each containing many

3. single checks within a page

Contained Blackboxes
Table 13. ResultsCollector building blocks

Per-Run Results

Single-Page-
Results

Single-Check-
Results

Finding

results for potentially many Html pages/documents.

results for a single page

results for a single type of check (e.g. missing-images check)

a single finding, (e.g. "image 'logo.png' missing"). Can hold suggestions and
(planned for future releases) the responsible html element.

15

Interface Results

The Result interface is used by all clients (especially Reporter subclasses, graphical and command-
line clients) to access checking results. It consists of three distinct APIs for overall RunResults, single-
page results (PageResults) and single-check results (CheckResults). See the interface definitions
below - taken from the Groovy- source code:

Interface RunResults
public interface RunResults {

// returns results for all pages which have been checked
public ArraylList<SinglePageResults> getResultsForAllPages()

// how many pages were checked in this run?
public int nrOfPagesChecked()

// how many checks were performed in all?
public int nrOfChecksPerformedOnAl1Pages()

// how many findings (errors and issues) were found in all?
public int nrOfFindingsOnAl1Pages()

// how long took checking (in milliseconds)?
public Long checkingTookHowManyMillis()

Interface PageResults
public interface PageResults {

// what's the title of this page?
public String getPageTitle()

// what's the filename and path?
public String getPageFileName()
public String getPageFilePath()

// how many items have been checked?
public int nrOfItemsCheckedOnPage()

// how many problems were found on this page?
public int nrOfFindingsOnPage()

// how many different checks have run on this page?
public int howManyCheckersHaveRun()

16

Interface CheckResults
public interface CheckResults {
// return a description of what is checked
// (e.g. "Missing Images Checker" or "Broken Cross-References Checker"

public String description()

// returns all findings/problems found during this check
public ArraylList<Finding> getFindings()

17

Chapter 6. Runtime View

0 Not appropriate for this system due to very simple implementation.

18

Chapter 7. Deployment View

cmp h5-:'.-|:h=_l|:|nl|:r!,rment/J
D=
hse development —
global artifact repository (e Bintray)
wdeplpurent Specs
hoe deploywent spec | _ eeglpserifes
_____ —_——) - — =hingre |5
agpraplled -frpms heg-plugin (Fat-jar)
Him| Sarity Cﬂ AT E
k 4
| L
\ \ integnet © hitps
Jok 5 \ \
] Grﬂ‘ﬂ"r'y _5| . L
\ \ wergferencet -binary -versipns
_ A
Gradle =] Jroup = — .
. hae wsers' computer |
L]
bl build gradle |5
g
Legend Spme = ‘::"" -
dpcumentation - check
pur stuff
pther stuff
v Runtfm,g_:‘l

Figure 5. Deployment

Table 14. Deployment

Node / Artifact Description

hsc plugin binary compiled version of HtmlSC, including required dependencies.

hsc-development where development of HtmlSC takes place

artifact repository global public cloud repository for binary artifacts, similar to mavenCentral.

(Bintray) Htm1SC binaries are uploaded to this server.

hsc user computer where arbitrary documentation takes place with html as output formats.

build.gradle Gradle build script configuring (among other things) the Htm1SC plugin to check

some documentation.

The three nodes (computers) shown in Deployment are connected via Internet.

Sanity checker will:

1. be bundled as a single jar,
2. be uploaded to the Bintray repository,

3. referencable within a gradle buildfile,

4. provide a main method with parameters and options, so all checks can be called from the

19

https://bintray.com/bintray/jcenter
https://search.maven.org/

20

command line.

Chapter 8. Technical and Crosscutting
Concepts

8.1. HTML Checking Domain Model

emp HTML_Checking_Domain /

(external)
Hyperlink

RunResult

(internal) Crosd L Page - ieggeDirs FileCollection
Reference

<~~~ - fers t
contains - - -.."f'_ys e
o.% 1& = —
= - — -
" = = =| Single Page Results

Link |
I
I
I
|
I

o HtmlElgment - pageTitle String
- pageName :String
o.» AN N
AY \ responsible
A
* | cheek \
*
refevenees heck fink |l Finding
-\ 1 - item String
. A | - Suggestion :String
1 A Y
. \\ 1 ’?d_ \0 .
tects -
Link Target ~ | - S '\“
~ Check target ~ ! - . .
- - LY n £ winstantiates 1 Single Check Resufts
T
URI = Cheeker | _ ===) - WhatisChecked String
sgscribes [= =1 winstantigtes - Spurceltem :String
T~ - - targetltem String
Resouree - nrDfftemsChecked :int
File Image File Legend
Style-
sheet

Implementation Class
Dpmain Conpept

Figure 6. HTML Checking Domain Model

Table 15. Domain Model

Term

Anchor

Cross Reference

External Link
Finding

Html Element

Description

Html element to create — Links. Contains link-target in the form

Link from one part of the document to another part within the same

document. A special form of - Internal Link, with a - Link Target in the same
document.

Link to another page or resource at another domain.
Description of a problem found by one — Checker within the — Html Page.

HTML pages (documents) are made up by HTML elements .e.g., <a href="1link
target">, and others. See the W3-Consortium

21

https://www.w3schools.com/html/html_elements.asp

Term Description

Html Page A single chunk of HTML, mostly regarded as a single file. Shall comply to
standard HTML syntax. Minimal requirement: Our HTML parser can
successfully parse this page. Contains — Html Elements. Also called Html
Document.

id Identifier for a specific part of a document, e.g. <h2 id="#someHeader">. Often
used to describe - Link Targets.

Internal Link Link to another section of the same page or to another page of the same
domain. Also called Local Link.

Link Any a reference in the - Html Page that lets you display or activate another
part of this document (- Internal Link) or another document, image or
resource (can be either —Internal (local) or - External Link). Every link leads
from the Link Source to the Link Target

Link Target The target of any - Link, e.g. heading or any other a part of a » Html
Document, any internal or external resource (identified by URI). Expressed by
-id

Local Resource local file, either other Html files or other types (e.g. pdf, docx)

Run Result The overall results of checking a number of pages (at least one page).

Single Page Result A collection of all checks of a single — Html Page.

URI Universal Resource Identifier. Defined in RFC-2396. The ultimate source of
truth concerning link syntax and semantic.

8.2. Gradle Plugin Concept and Development
You should definitely read the original Gradle User Guide on custom plugin development.
To enable the required Gradle integration, we implement a lean wrapper as described in the Gradle

user guide.

class HtmlSanityCheckPlugin implements Plugin<Project> {
void apply(Project project) {
project.task('htmlSanityCheck',
type: HtmlSanityCheckTask,
group: 'Check')

8.2.1. Directory Structure and Required Files

22

https://www.ietf.org/rfc/rfc2396.txt
https://gradle.org/docs/current/userguide/userguide.html
chapters/chap-01-Requirements.pdf#requirements

| -htm1SanityCheck

.
|-aim42

| |-htmlsanitycheck
|

|

| | ...
| |-HtmlSanityCheckPluginTest

| |-src

| | |-main

| | | [-org

[| | | [|-aim42

| | | | | |-htmlsanitycheck

| e

| | | | | | |-HtmlSanityCheckPlugin.groovy @
| | | | | | [|-HtmlSanityCheckTask.groovy

| | | |-resources

| | | | |-META-INF o
| | | | | |[|-gradle-plugins

| | | | | | |-htmlSanityCheck.properties &
| | |-test

| | | [-org

I

I

I

I I

|

@ the actual plugin code: HtmlSanityCheckPlugin.groovy and HtmlSanityCheckTask.groovy groovy
files

@ Gradle expects plugin properties in META-INF

@ property file containing the name of the actual implementation class: implementation-
class=org.aim42.htmlsanitycheck.HtmlSanityCheckPlugin

8.2.2. Passing Parameters From Buildfile to Plugin

To be done

8.2.3. Building the Plugin

The plugin code itself is built with gradle.
8.2.4. Uploading to Public Archives

8.2.5. Further Information on Creating Gradle Plugins

Although writing plugins is described in the Gradle user guide, a clearly explained sample is given
in a Code4Reference tutorial.

8.3. Flexible Checking Algorithms

Htm1SC uses the template-method-pattern to enable flexible checking algorithms:

23

https://code4reference.com/2012/08/gradle-custom-plugin-part-2/

The Template Method defines a skeleton of an algorithm in an operation,
and defers some steps to subclasses.

— https://sourcemaking.com/design_patterns/template_method

We achieve that by defining the skeleton of the checking algorithm in one operation, deferring the
specific checking algorithm steps to subclasses.

The invariant steps are implemented in the abstract base class, while the variant checking
algorithms have to be provided by the subclasses.

Template method "performCheck"

/**

** template method for performing a single type of checks on the given @see
HtmlPage.
*

* Prerequisite: pageToCheck has been successfully parsed,

* prior to constructing this Checker instance.

**/

public SingleCheckResults performCheck(final HtmlPage pageToCheck) {
// assert non-null htmlPage
assert pageToCheck != null

checkingResults = new SingleCheckResults()

// description is set by subclasses
initCheckingResultsDescription()

return check(pageToCheck) // <1> delegate check() to subclass

}
u:'.mptemplate-memnd/
perforvaCheck is the template
=abstracts wrthpd:
Checker
+ ohecky) Fxr'g-rg{'ﬁgc.é'.ﬁc:s’mfﬁ 1. initialize CheekingResufts
+ performCheck() woid 2. cheek) /7 daferved to the
/ K concrete Subelasses
ImageFileExstChecker internallinkshecker DuplicateldChecker
- baseDirzctory String + cheekf) SingleCheckResuld + check{) SingleCheckResults
+ checkl) SingleCheckResufts

Figure 7. Template-Method Overview

Table 16. Template Method

24

Component Description

Checker abstract base class, containing the template method check() plus the public
method performCheck()

MissinglmageFiles checks if referenced local image files exist
Checker

MissingImgAltAttr checks if there are image tags without alt-attributes
ibuteChecker

BrokenCrossRefer checks if cross references (links referenced within the page) exist
encesChecker

DuplicateldChecke checks if any id has multiple definitions
r

MissingLocalReso checks if referenced other resources exist
urcesChecker

BrokenHttpLinksC checks if external links are valid
hecker

IllegalLinkChecker checks if links do not violate HTML link syntax

8.3.1. MissingImageFilesChecker

Addresses requirement R-1.
Checks if image files referenced in really exists on the local file system.

The (little) problem with checking images is their path: Consider the following HTML fragment
(from the file testme.html):

This image file ("one-image.jpg") has to be located relative to the directory containing the
corresponding HTML file.

Therefore the expected absolute path of the "one-image.jpg" has to be determined from the absolute
path of the html file under test.

We check for existing files using the usual Java API, but have to do some directory arithmetic to get
the absolutePathTolmageFile:

File f = new File(absolutePathToImageFile);
if(f.exists() & !f.isDirectory())

8.3.2. MissingImgAltAttributeChecker

Addresses requirement R-6.

25

chapters/chap-01-Requirements.pdf#requiredChecks
chapters/chap-01-Requirements.pdf#requiredChecks

Simple syntactic check: iterates over all tags to check if the image has an alt-tag.

8.3.3. BrokenCrossReferencesChecker

Addresses requirement R-2.

Cross references are document-internal links where the href="link-target" from the html anchor tag
has no prefix like +http, https, ftp, telnet, mailto, file and such.

Only links with prefix # shall be taken into account, e.g. .

8.3.4. DuplicateldChecker

Addresses requirement R-4.

Sections, especially headings, can be made link-targets by adding the id="#xyz" element, yielding
for example html headings like the following example.

Problems occur if the same link target is defined several times (also shown below).

<h2 id="seealso">First Heading</h2>
<h2 id="seealso">Second Heading</h2>
Duplicate definition - where shall I go now?

8.3.5. MissingLocalResourcesChecker

Addresses requirement R-3.

Current limitations:

Does NOT deep-checking of references-with-anchors of the following form:
GroupInit

containing both a local (file) reference plus an internal anchor #target

See issues #252 (false positives) and #253 (deep links shall be checked)

8.3.6. BrokenHttpLinksChecker

Addresses requirement R-9.

Problem here are networking issues, latency and HTTP return codes. This checker is planned, but
currently not implemented.

8.3.7. IllegalLinkChecker

Addresses requirement R-5.

26

chapters/chap-01-Requirements.pdf#requiredChecks
chapters/chap-01-Requirements.pdf#requiredChecks
chapters/chap-01-Requirements.pdf#requiredChecks
chapters/chap-01-Requirements.pdf#requiredChecks
chapters/chap-01-Requirements.pdf#requiredChecks

This checker is planned, but currently not implemented. :jbake-menu: -

8.4. Encapsulate HTML Parsing

We encapsulate the third-party HTML parser (https://jsoup.org) in simple wrapper classes with
interfaces specific to our different checking algorithms.

8.5. Flexible Reporting

Htm1SC allows for different output formats:

e formats (HTML and text) and

» destinations (file and console)

The reporting subsystem uses the template method pattern to allow different output formats (e.g.
Console and HTML). The overall structure of reports is always the same:

Graphical clients can use the API of the reporting subsystem to display reports in arbitrary formats.

The (generic and abstract) reporting is implemented in the abstract Reporter class as follows:

/**

* main entry point for reporting - to be called when a report is requested
* Uses template-method to delegate concrete implementations to subclasses
*/

public void reportFindings() {

initReport() @
reportOverallSummary() @
reportAl1Pages() ®
closeReport() @

}
//
private void reportAllPages() {
pageResults.each { pageResult ->
reportPageSummary(pageResult) ®
pageResult.singleCheckResults.each { resultForOneCheck ->
reportSingleCheckSummary(resultForOneCheck) ®
reportSingleCheckDetails(resultForOneCheck) @
reportPageFooter()

@ initialize the report, e.g. create and open the file, copy css-, javascript and image files.

@ create the overall summary, with the overall success percentage and a list of all checked pages
with their success rate.

® iterate over all pages

@ write report footer - in HTML report also create back-to-top-link

27

https://jsoup.org

® for a single page, report the nr of checks and problems plus the success rate
® for every singleCheck on that page, report a summary and
@ all detailed findings for a singleCheck.

for every checked page, create a footer, page break or similar to graphically distinguish pages
between each other.

8.5.1. Styling the Reporting Output

* The HtmlReporter explicitly generates css classes together with the html elements, based upon
css styling re-used from the Gradle JUnit plugin.

 Stylesheets, a minimized version of jQuery javascript library plus some icons are copied at
report-generation time from the jar-file to the report output directory.

» Styling the back-to-top arrow/button is done as a combination of JavaScript plus some css
styling, as described in https://www.webtipblog.com/adding-scroll-top-button-website/.

8.5.2. Copy Required Resources to Output Directory

When creating the HTML report, we need to copy the required resource files (css, JavaScript) to the
output directory.

The appropriate copy method was re-used from the Gradle sources.

8.5.3. Attributions

Credits for the arrow-icon https://www.iconfinder.com/icons/118743/arrow_up_icon

28

https://www.webtipblog.com/adding-scroll-top-button-website/
https://github.com/gradle/gradle/blob/master/subprojects/performance/src/testFixtures/groovy/org/gradle/performance/results/ReportGenerator.java#L50-50
https://www.iconfinder.com/icons/118743/arrow_up_icon

Chapter 9. Design Decisions

9.1. Checking of external links postponed

In the current {revision} we won’t check external links. These checks have been postponed to later
versions.

9.2. HTML Parsing with jsoup

To check HTML we parse it into an internal (DOM-like) representation. For this task we use jsoup
HTML parser, an open-source parser without external dependencies.

To quote from the jsoup website:

jsoup is a Java library for working with real-world HTML. It provides a very
convenient API for extracting and manipulating data, using the best of
DOM, CSS, and jQuery-like methods.

Goals of this decision

Check HTML programmatically by using an existing API that provides access and finder methods
to the DOM-tree of the file(s) to be checked.

Decision Criteria

» few dependencies, so the HtmlSC binary stays as small as possible.

 accessor and finder methods to find images, links and link-targets within the DOM tree.

Alternatives

* HTTPUnit: a testing framework for web applications and -sites. Its main focus is web testing
and it suffers from a large number of dependencies.

* jsoup: a plain HTML parser without any dependencies (!) and a rich API to access all HTML
elements in DOM-like syntax.

Find details on how HtmlSC implements HTML parsing in the HTML encapsulation concept.

9.3. String Similarity Checking with Jaro-Winkler-
Distance

The small java-string-similarity library (by Ralph Allen Rice) contains implementations of several
similarity-calculation algorithms. As it is not available as public binary, we use the sources instead,
primarily:

net.ricecode.similarity.JaroWinklerStrategyTest
net.ricecode.similarity.JaroWinklerStrategy

29

https://jsoup.org
https://jsoup.org
chapters/chap-08-Concepts.pdf#html-encapsulation
https://wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://github.com/rrice/java-string-similarity

30

The actual implementation of the similarity comparison has been postponed to a
later release of Htm1SC

Chapter 10. Glossary

See the domain model for explanations of important terms.

31

	HTML Sanity Checker Architecture Documentation
	Table of Contents
	Goals of this Documentation
	Disclaimer

	Chapter 1. Introduction and Goals
	1.1. Requirements Overview
	1.1.1. Basic Usage
	Terminology: What Can Go Wrong in HTML Files?
	1.1.2. General Functionality
	1.1.3. Types of Sanity Checks
	1.1.4. Reporting and Output Requirements

	1.2. Quality Goals
	1.3. Stakeholder
	1.4. Background Information on URIs
	1.4.1. Intra-Document URIs
	1.4.2. References on URIs and HTML Syntax

	Chapter 2. Constraints
	Chapter 3. Context
	3.1. Business Context
	3.2. Deployment Context

	Chapter 4. Solution Strategy
	Chapter 5. Building Block View
	5.1. Whitebox HtmlSanityChecker
	5.1.1. HSC Core (Blackbox)

	5.2. Building Blocks - Level 2
	5.2.1. HSC-Core (Whitebox)
	5.2.2. Checker and xyzChecker Subclasses

	5.3. Building Blocks - Level 3
	5.3.1. ResultsCollector (Whitebox)

	Chapter 6. Runtime View
	Chapter 7. Deployment View
	Chapter 8. Technical and Crosscutting Concepts
	8.1. HTML Checking Domain Model
	8.2. Gradle Plugin Concept and Development
	8.2.1. Directory Structure and Required Files
	8.2.2. Passing Parameters From Buildfile to Plugin
	8.2.3. Building the Plugin
	8.2.4. Uploading to Public Archives
	8.2.5. Further Information on Creating Gradle Plugins

	8.3. Flexible Checking Algorithms
	8.3.1. MissingImageFilesChecker
	8.3.2. MissingImgAltAttributeChecker
	8.3.3. BrokenCrossReferencesChecker
	8.3.4. DuplicateIdChecker
	8.3.5. MissingLocalResourcesChecker
	8.3.6. BrokenHttpLinksChecker
	8.3.7. IllegalLinkChecker

	8.4. Encapsulate HTML Parsing
	8.5. Flexible Reporting
	8.5.1. Styling the Reporting Output
	8.5.2. Copy Required Resources to Output Directory
	8.5.3. Attributions

	Chapter 9. Design Decisions
	9.1. Checking of external links postponed
	9.2. HTML Parsing with jsoup
	9.3. String Similarity Checking with Jaro-Winkler-Distance

	Chapter 10. Glossary

